Space charge in fixed-field rings

Antoine Cerfon, Courant Institute NYU with J. Guadagni, O. Bühler (Courant Institute NYU) J.P. Freidberg (MIT), and F.I. Parra (Oxford)

MOVING FRAME

► The analysis is simpler and more elegant in the frame moving with the beam centroid:

► Ignore acceleration phases to focus on beam dynamics due to space charges

BEAM PHENOMA WE WOULD LIKE TO BETTER

UNDERSTAND

SPIRALING OF HIGH INTENSITY BEAMS

PSI Injector II

PICN (Adam)

OPAL-CYCL (Adelmann et al.)

Breakup of high intensity beams

(Bi et al.)

Small Isochronous Ring (Pozdeyev *et al.*)

BEAM BREAKUP

Detailed results from E. Pozdeyev, J. A. Rodriguez, F. Marti, and R. C. York, *Phys. Rev. STAB* **12**, 054202 (2009).

BEAM BREAKUP

Detailed results from E. Pozdeyev, J. A. Rodriguez, F. Marti, and R. C. York, *Phys. Rev. STAB* **12**, 054202 (2009).

- ► Number of clusters independent of bunch density
- ► Number of clusters scales linearly with bunch length

METHOD I: SOLVING THE N-BODY PROBLEM

- ► An intuitive idea is to solve for the motion of all the particles iteratively
- \blacktriangleright At each time step i, solve

$$m\frac{d^2\mathbf{x_k}^{(i)}}{dt} = q\left(\mathbf{E}(\mathbf{x_k})^{(i-1)} + \frac{d\mathbf{x_k}^{(i)}}{dt} \times \mathbf{B}(\mathbf{x_k})\right) \qquad k = 1, \dots, N$$

$$\mathbf{E}(\mathbf{x_k})^{(i)} = \sum_{\substack{j=1\\i \neq k}}^{N} \frac{q_k}{4\pi\epsilon_0} \frac{\mathbf{x_k}^{(i)} - \mathbf{x_j}^{(i)}}{|\mathbf{x_k}^{(i)} - \mathbf{x_j}^{(i)}|^3}$$

- ▶ Use Fast Multipole Methodto evaluate the electric field in O(N) operations¹
- ► Still not feasible computationally large N– in the problems of interest $N \sim 10^9 10^{15}$

¹L. Greengard, V. Rokhlin, J. Comput. Phys. 73, 325 (1987)

METHOD II: COARSE-GRAIN AVERAGE IN PHASE SPACE

► For very large N, replace discrete particles with smooth distribution function $f(\mathbf{x}, \mathbf{v}, t)$

$$f(\mathbf{x}, \mathbf{v}, t) d\mathbf{x} d\mathbf{v}$$

is the expected number of particles in the infinitesimal volume dxdv.

THE PARTICLE IN CELL (PIC) APPROACH

► Sample the distribution function f with P "superparticles" $f_v(\mathbf{x}, \mathbf{v}, t)$

$$f(\mathbf{x}, \mathbf{v}, t) = \sum_{p} f_{p}(\mathbf{x}, \mathbf{v}, t)$$

- ▶ Write $f_p(\mathbf{x}, \mathbf{v}, t) = N_p S_x(\mathbf{x} \mathbf{x}_p(t)) S_v(\mathbf{v} \mathbf{v}_p(t))$ S: shape functions for the "superparticle" N_p : number of physical particles in the "superparticle"
- f_p evolves in time according to

$$\frac{dN_p}{dt} = 0 \qquad \frac{d\mathbf{x}_p}{dt} = \mathbf{v}_p \qquad \frac{d\mathbf{v}_p}{dt} = \frac{q}{m} \left(-\nabla \phi_p + \mathbf{v}_p \times \mathbf{B} \right)
\nabla^2 \phi_p = -\frac{q}{\epsilon_0} \sum_{p} N_p S_x(\mathbf{x} - \mathbf{x}_p)$$

► Difference with discrete particle simulations: the fields and trajectories are smooth

THE PARTICLE IN CELL (PIC) APPROACH

- Advantages:
 - ► Intuitive: Newton-Maxwell system as in the discrete particle case
 - ► Easier to parallelize than continuum methods
 - Works well for high-dimensional problems

- ▶ Disadvantages:
 - ► Does not yield much theoretical insights
 - Statistical noise

MOMENT APPROACH

Vlasov equation:
$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{q}{m} (-\nabla \phi + \mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f = 0$$

► Taking the integrals $\iiint d\mathbf{v}$, $\iiint m\mathbf{v}d\mathbf{v}$ and $\iiint mv^2/2d\mathbf{v}$ of this equation, we obtain the exact **fluid equations**:

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{V}) = 0 \qquad \text{Continuity}$$

$$mn\left(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V}\right) = en\left(-\nabla \phi + \mathbf{V} \times \mathbf{B}\right) - \nabla \cdot \mathbf{P} \qquad \text{Momentum}$$

$$\frac{d}{dt} \left(3\right) = 5$$

$$\frac{d}{dt}\left(\frac{3}{2}p\right) + \frac{5}{2}p\nabla \cdot \mathbf{U} + \boldsymbol{\pi} : \nabla \mathbf{U} + \nabla \cdot \mathbf{q} = 0 \qquad \text{(Energy)}$$

with $\mathbf{p} = p\mathbf{I} + \boldsymbol{\pi}$.

- Closure problem: for each moment, we introduce a new unknown ⇒ End up with too many unknowns
- ► Need approximation to close the moment hierarchy

IDENTIFYING SMALL PARAMETERS

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{q}{m} \left(-\nabla \phi + \mathbf{v} \times \mathbf{B} \right) \cdot \nabla_{v} f = 0$$

- ► Simplify geometry: $\mathbf{B} = B_0 \mathbf{e}_z$ (uniform magnetic field)
- ► Normalize equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{1}{\epsilon} \left(-\frac{\delta^2}{\epsilon} \nabla \phi + \mathbf{v} \times \mathbf{e}_z \right) \cdot \nabla_{\mathbf{v}} f = 0$$

$$\epsilon \equiv \frac{\rho}{a} \qquad \delta^2 \equiv \frac{\omega_p^2}{\omega_c^2} = \frac{mn}{\epsilon_0 B^2}$$

- ► *a*: characteristic size of the beam
- ρ: Particle gyroradius in the moving frame
 (related to the magnitude of the beam mismatch oscillations)
- ► All cyclotrons satisfy $\delta^2 \le 1$, and most satisfy $\delta^2 \ll 1$

DERIVING FLUID EQUATIONS FOR THE BEAM

- ▶ In general, $\epsilon = \rho/a \lesssim 1$
- ▶ Focus on the regime $\epsilon \sim \delta \ll 1$
- ▶ To lowest order in δ

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{1}{\epsilon} \left(-\frac{\delta^2}{\epsilon} \nabla \phi + \mathbf{v} \times \mathbf{e}_z \right) \cdot \nabla_{\mathbf{v}} f = 0$$

becomes

$$\therefore (\mathbf{v} \times \mathbf{e}_z) \cdot \nabla_{\mathbf{v}} f = 0 + O(\delta)$$

▶ The pressure tensor must then be **diagonal**² to lowest order in δ :

$$\mathbf{P} = p_{\perp}\mathbf{I} + (p_{\parallel} - p_{\perp})\mathbf{b}\mathbf{b} = \begin{pmatrix} p_{\perp} & 0 & 0 \\ 0 & p_{\perp} & 0 \\ 0 & 0 & p_{\parallel} \end{pmatrix} + O(\delta)$$

► Closed fluid equations can then be derived for the 2D dynamics in the plane perpendicular to the magnetic field²

²A.J. Cerfon *et al.*, *PRSTAB* **16**, 024202 (2013)

MULTIPLE TIME SCALE ANALYSIS

- $\delta \ll 1$ means electrostatic force is much smaller than magnetic force
- ► Time scale for particle gyration much shorter than time scale for macroscopic evolution of the beam
- ► Situation lends itself to a multiple time scale analysis, in which the dynamics is averaged over the fast cyclotron time scale²
- ► One finds the following equation for the space charge dynamics:

$$\frac{\partial n}{\partial (\delta^2 t)} + \nabla \phi_{\times} \mathbf{e}_z \cdot \nabla n = 0$$
$$\nabla^2 \phi = -n$$

- ► These equations describe the advection of the density profile in the velocity field $\mathbf{E} \times \mathbf{B}/B^2$, the so-called $\mathbf{E} \times \mathbf{B}$ velocity
- ▶ Dynamics independent of the value of δ except for the time scale of the observed phenomena
- ► Scaling linear with δ^2 , i.e. density, i.e. current (at fixed energy)

ISOMORPHISM WITH 2D EULER EQUATIONS

Beam vortex dynamics

$$\frac{\partial n}{\partial t} + \nabla \phi \times \mathbf{e}_z \cdot \nabla n = 0$$
$$\nabla^2 \phi = -n$$

2D incompressible Euler

$$\frac{\partial \omega}{\partial t} + \nabla \psi \times \mathbf{e}_z \cdot \nabla \omega = 0$$
$$\nabla^2 \psi = -\omega$$

n: bunch density; ϕ : electrostatic potential

 ω : z-directed vorticity; ψ : stream function for the flow

- ► Isomorphism recognized a long time ago in a slightly different context³
- ► We proved that the isomorphism holds even for finite temperature beams
- ► We can use decades old fluid dynamics results to determine/understand the stability of bunch distributions

³C.F. Driscoll and K.S. Fine, *Phys.Fluids B* **2** 1359 (1990)

STABILITY OF ROUND BEAMS

- Radial density distributions automatically satisfy the equations
- ► Well-known results from fluid theory of radially symmetric vortex patches:
 - ▶ If n(r) is monotonically decreasing, the bunch is nonlinearly stable to nonsymmetric density perturbations
 - ► Hollow density profiles can be unstable to these perturbations

Gaussian
$$n(r)$$
, $\delta^2 = 0.8$

EXB ADVECTION

ELLIPTIC BUNCHES WITH SMOOTH DENSITY PROFILE

- ► More complicated case. Answer depends on the smoothness of the profile
- ► For reasonably smooth profile, "axisymmetrization principle"⁴
- ► Also known as "inviscid damping", Euler analog of Landau damping

⁴M.V. Melander, J.C. McWilliams and N.J. Zabusky, J. Fluid Mech. 178 (1987) 137

BEAM SPIRALING A.K.A AXISYMMETRIZATION

^aJ.J. Yang et al., Phys. Rev. ST AB **13** 064201

- ► In PSI Injector II, formation of a round stable core after 40 turns (good)
- ► In machines with lower δ^2 , core and halo take longer to form Potentially bad situation if low density halo forms with high energy

BEAM BREAKUP

Results from E. Pozdeyev, J. A. Rodriguez, F. Marti, and R. C. York, *Phys. Rev. STAB* **12**, 054202 (2009).

BEAM BREAKUP

- Number of clusters independent of bunch density
 - ⇒ Automatic in our model
- ► Number of clusters scales linearly with bunch length
 - ⇒ Consequence of shear inviscid instability

SHEAR INVISCID INSTABILITY

Figure 5. Contour plots of spanwises vorticity. Linear and non-linear twodimensional evolution of a disturbance for M_e = 0.4, Re = 500 and d = 0.82. The disturbance because the contract of the foliation of the contract of the contract

Figure: Linear and nonlinear instability of a compressible shear layer described by the Navier Stokes equation⁵

⁵R.A. Coppola Germanos, L. Franco de Souza, M.A. Faraco de Medeiros, *J. Braz. Soc. Mech. Sci & Eng.* **31**, 125 (2009)

SHEAR INVISCID INSTABILITY

- ► For simplicity, assume infinite bunch in the *y* direction
- ► Use modal approach and solve Rayleigh eigenvalue equation^a

^aP.G. Drazin and W.H. Reid, *Hydrodynamic Stall* Press (1981)

SHEAR INVISCID INSTABILITY

► Rayleigh's eigenvalue equation for a shear layer:

$$(V_y - \omega) \left(\frac{d^2 \hat{\phi}}{dx^2} - k^2 \phi \right) - \frac{d^2 V_y}{dx^2} \hat{\phi} = 0$$

- ▶ Solving this equation numerically, we find that the wave number k with the largest growth rate is such that $k \approx 0.8$ cm⁻¹
- Agrees well with PIC observations for SIR

ELLIPTIC BUNCHES WITH UNIFORM DENSITY

- ► Classical case in fluid dynamics: **uniform density profile** Call *a* the semi-major axis and *b* the semi-minor axis
- ▶ If a/b < 3, bunch is linearly and nonlinearly **stable** to edge perturbations
 If a/b > 3, bunch is linearly and nonlinearly **unstable** to edge perturbations
- ► Instability is a potential mechanism for **beam breakup**

Uniform
$$n$$
, $\delta^2 = 0.2$, $a/b = 20$

ARBITRARY TEMPERATURE / INITIAL CONDITIONS

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{1}{\epsilon} \left(-\frac{\delta^2}{\epsilon} \nabla \phi + \mathbf{v} \times \mathbf{e}_z \right) \cdot \nabla_{\mathbf{v}} f = 0$$

▶ We treated the case $\epsilon \ll 1$; what happens when $\epsilon \sim 1$?

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{1}{\epsilon} \mathbf{v} \times \mathbf{e}_z \cdot \nabla_{\mathbf{v}} f = 0$$

- ► To lowest order, $f = f(x, y, v_{\perp}, \varphi) \Rightarrow f$ is not independent of gyrophase \Rightarrow In principle, need to resolve betatron time scale
- ► <u>Idea</u>: (called gyrokinetics) Solve for distribution of **gyrocenters** $\overline{f}(\mathbf{R}, v_{\perp}, \varphi)$ where $\mathbf{R} = \mathbf{r} + \mathbf{v} \times \mathbf{e}_z/\omega_c$
- ▶ After transformation $(\mathbf{r}, v_{\perp}, \varphi) \rightarrow (\mathbf{R}, \mu, \varphi)$, one finds

$$\frac{\partial f}{\partial \varphi} = 0 + O(\delta)$$

GYROKINETICS FOR CYCLOTRON BEAMS

$$\frac{\partial \bar{f}}{\partial t} + \frac{q}{m\omega_c} \mathbf{b} \times \langle \nabla \phi \rangle_{\varphi} \cdot \nabla_{\mathbf{R}} \bar{f} = 0$$

$$\nabla^2 \phi(\mathbf{r}, t) = \frac{\omega_c}{\epsilon_0} \iint \bar{f}(\mathbf{r} + \frac{\mathbf{v}_{\perp} \times \mathbf{b}}{\omega_c}, \mu, t) d\mu d\varphi$$

- ► Problem is now 3D and kinetic ⇒ slightly more complicated
- ► Thanks to gyroaveraging, only solve on space charge time scale
- ► A solver is being developed by NYU graduate student J. Guadagni, and is almost fully written
- ► First results will be presented at APS-DPP meeting at the end of October
- ► Next step: include spatial inhomogeneities for the magnetic field